Espacio-tiempo de Minkowski | propiedades

Propiedades

Contenido material

El tensor de curvatura de Riemann del espacio-tiempo de Minkowski es idénticamente nulo, razón por la cual se dice que el espacio-tiempo es plano. Así el resto de tensores y escalares de curvatura resultan nulos, siendo también nulo el tensor de Einstein que es igual al contenido material. Por tanto, el espacio-tiempo de Minkowski representa un universo vacío.

Físicamente el espacio-tiempo de Minkowski puede emplearse como una aproximación local del espacio-tiempo en regiones razonablemente pequeñas y en presencia de materia, siempre que esta no llegue a gravitar por sí misma. Este hecho queda recogido en el Principio de equivalencia.

Geodésicas

Cualquier línea recta constituye una geodésica, ya que el tensor de curvatura se anula. Tomando coordenadas cartesianas las geodésicas vienen dadas simplemente por:

(5)

Que corresponden a líneas rectas:

(6)

Donde:

son las componentes de la velocidad de una partícula.
, es el tiempo propio de la partícula que viaja según la geodésica.

Grupo de isometría

El grupo de isometría del espacio-tiempo de Minkowski es precisamente el grupo de Poincaré, que admite diversos subgrupos entre ellos: