Tsunami
English: Tsunami

Esquema de un tsunami
Animación de un tsunami
Simulación de un tsunami
tsunami
Efectos de un tsunami

Un tsunami[3]​ A diferencia de las olas oceánicas normales producidas por el viento, o las mareas, que son generadas por la atracción gravitatoria del Sol y la Luna, un tsunami es generado por el desplazamiento de agua.

Este tipo de olas desplazan una cantidad de agua muy superior a las olas superficiales producidas por el viento. Se calcula que el 90 % de estos fenómenos son provocados por terremotos, en cuyo caso reciben el nombre más correcto y preciso de «tsunamis tectónicos». La energía de un maremoto depende de su altura, de su longitud de onda y de la longitud de su frente. La energía total descargada sobre una zona costera también dependerá de la cantidad de picos que lleve el tren de ondas.[4]​ Es frecuente que un tsunami que viaja grandes distancias, disminuya la altura de sus olas, pero siempre mantendrá una velocidad determinada por la profundidad sobre la cual el tsunami se desplaza. Normalmente, en el caso de los tsunamis tectónicos, la altura de la onda de tsunami en aguas profundas es del orden de 1.0 metros, pero la longitud de onda puede alcanzar algunos cientos de kilómetros. Esto es lo que permite que aun cuando la altura en océano abierto sea muy baja, esta altura crezca en forma abrupta al disminuir la profundidad, con lo cual, al disminuir la velocidad de la parte delantera del tsunami, necesariamente crezca la altura por transformación de energía cinética en energía potencial. De esta forma una masa de agua de algunos metros de altura puede arrasar a su paso hacia el interior.

Causas y fenomenología

Antiguamente, el término tsunami se utilizaba para referirse a las olas producidas por huracanes y temporales que podían entrar tierra adentro, pero estas no dejaban de ser olas superficiales producidas por el viento. Tampoco se debe confundir con la ola producida por la marea conocida como macareo. Este es un fenómeno regular y mucho más lento, aunque en algunos lugares estrechos y de fuerte desnivel pueden generarse fuertes corrientes.

La mayoría de los tsunamis son originados por terremotos de gran magnitud bajo la superficie acuática. Para que se origine un tsunami, el fondo marino debe ser movido abruptamente en sentido vertical, de modo que una gran masa de agua del océano sea impulsada fuera de su equilibrio normal. Cuando esta masa de agua trata de recuperar su equilibrio genera olas. El tamaño del tsunami estará determinado por la magnitud de la deformación vertical del fondo marino entre otros parámetros como la profundidad del lecho marino. No todos los terremotos bajo la superficie acuática generan tsunamis, sino solo aquellos de magnitud considerable con hipocentro en el punto de profundidad adecuado.

Un tsunami tectónico producido en un fondo oceánico de 5 km de profundidad desplazará toda la columna de agua desde el fondo hasta la superficie. El desplazamiento vertical puede ser tan solo de centímetros; pero, si se produce a la suficiente profundidad, la velocidad será muy alta y la energía transmitida a la onda será enorme. Aun así, en alta mar la ola pasa casi desapercibida, ya que queda camuflada entre las olas superficiales. Sin embargo, destacan en la quietud del fondo marino, el cual se agita en toda su profundidad.

La zona más afectada por este tipo de fenómenos es el océano Pacífico, debido a que en él se encuentra la zona sísmicamente más activa del planeta, el cinturón de fuego. Por ello, es el único océano con un sistema de alertas verdaderamente eficaz.

Física de los tsunamis tectónicos

No existe un límite claro respecto de la magnitud necesaria de un sismo como para generar un tsunami. Los elementos determinantes para que ocurra un tsunami son la magnitud del sismo originador, la profundidad del hipocentro y la morfología de las placas tectónicas involucradas. Esto hace que para algunos lugares del planeta se requieran grandes sismos para generar un tsunami, en tanto que para otros baste con de sismos de menor magnitud. En otros términos, la geología local, la magnitud y la profundidad focal son parte de los elementos que definen la ocurrencia o no de un tsunami de origen tectónico.[4]

La velocidad de las olas puede determinarse a través de la ecuación:

,

donde D es la profundidad del agua que está directamente sobre el sismo y g, la gravedad terrestre (9,8 m/s²).[5]

A las profundidades típicas de 4-5 km las olas viajarán a velocidades en torno a los 600 kilómetros por hora o más. Su amplitud superficial o altura de la cresta H puede ser pequeña, pero la masa de agua que agitan es enorme, y por ello su velocidad es tan grande; y no solo eso, pues la distancia entre picos (longitud de onda) también lo es. Es habitual que la longitud de onda de la cadena de olas de un tsunami sea de 100 km, 200 km o más.

Cuando la ola entra en aguas poco profundas, se ralentiza y aumenta su amplitud (altura).

El intervalo de tiempo entre cresta y cresta (período de la onda) puede durar desde menos de diez minutos hasta media hora o más. Cuando la ola entra en la plataforma continental, la disminución drástica de profundidad hace que la velocidad de la ola disminuya y empiece a aumentar su altura. Al llegar a la costa, la velocidad habrá decrecido hasta unos 50 kilómetros por hora, mientras que la altura ya será de unos 3 a 30 m, dependiendo del tipo de relieve que se encuentre. La distancia entre crestas (longitud de onda L) también se estrechará cerca de la costa.

Debido a que la onda se propaga en toda la columna de agua, desde la superficie hasta el fondo, se puede hacer la aproximación a la teoría lineal de la hidrodinámica. Así, el flujo de energía E se calcula como:

,

siendo 'd' la densidad del fluido.

La teoría lineal predice que las olas conservarán su energía mientras no rompan en la costa. La disipación de la energía cerca de la costa dependerá, de las características del relieve marino. La manera como se disipa dicha energía antes de romper depende de la relación H/h. Una vez que llega a tierra, la forma en que la ola rompe depende de la relación H/L. Como L siempre es mucho mayor que H, las olas romperán como lo hacen las olas bajas y planas. Esta forma de disipar la energía es poco eficiente, y lleva a la ola adentrarse en tierra como una gran marea.[4]

A la llegada a la costa la altura aumentará, pero seguirá teniendo forma de onda plana. Se puede decir que hay un trasvase de energía de velocidad a amplitud. La ola se frena pero gana altura. Pero la amplitud no es suficiente para explicar el poder destructor de la ola. Incluso en un tsunami de menos de 5 m los efectos pueden ser devastadores. La ola arrastra una masa de agua mucho mayor que cualquier ola convencional, por lo que el primer impacto del frente de la onda viene seguido del empuje del resto de la masa de agua perturbada que presiona, haciendo que el mar se adentre mucho en tierra. Por ello, la mayoría de los tsunamis tectónicos se asemejan a una poderosa riada, en la cual es el mar el que inunda a la tierra, y lo hace a gran velocidad.

Antes de su llegada, el mar acostumbra a retirarse de la costa, que en caso de fondos relativamente planos, puede llegar a varios centenares de metros, como una rápida marea baja. Desde entonces hasta que llega la ola principal pueden pasar de 5 a 10 minutos, como también existen casos en los que han transcurrido horas para que la marejada llegue a tierra. A veces, antes de llegar la cadena principal de olas del tsunami, que realmente arrasará la zona, pueden aparecer «micro tsunamis» de aviso. Así ocurrió el 26 de diciembre de 2004 en las costas de Sri Lanka donde, minutos antes de la llegada de la ola fuerte, pequeños tsunamis entraron unos cincuenta metros playa adentro, provocando el desconcierto entre los bañistas antes de que se les echara encima la ola mayor. Según testimonios, «se vieron rápidas y sucesivas mareas bajas y altas, luego el mar se retiró por completo y solo se sintió el estruendo atronador de la gran ola que venía».

En la animación del tsunami del Índico de 2004 se puede observar cómo la onda se curva por los extremos y cómo Bangladés apenas sufre sus efectos, mientras que Sri Lanka, en la dirección de la zona central de la ola, la recibe de lleno.

Debido a que la energía de los tsunamis tectónicos es casi constante, pueden llegar a cruzar océanos y afectar a costas muy alejadas del lugar del suceso. La trayectoria de las ondas puede modificarse por las variaciones del relieve abisal, fenómeno que no ocurre con las olas superficiales. En los tsunamis tectónicos, dado que se producen debido al desplazamiento vertical de una falla, la onda que generan suele ser un tanto especial. Su frente de onda es recto en casi toda su extensión. Solo en los extremos se va diluyendo la energía al curvarse. La energía se concentra, pues, en un frente de onda recto, lo que hace que las zonas situadas justo en la dirección de la falla se vean relativamente poco afectadas, en contraste con las zonas que quedan barridas de lleno por la ola, aunque estas se sitúen mucho más lejos. El peculiar frente de onda es lo que hace que la ola no pierda energía por simple dispersión geométrica, sobre todo en su zona más central. El fenómeno es parecido a una onda encajonada en un canal o río. La onda, al no poder dispersarse, mantiene constante su energía. En un tsunami existe, cierta dispersión pero, sobre todo, en las zonas más alejadas del centro del frente de onda recto.

Dispersión de la energía debido al alargamiento del frente de onda

Hay quienes sostienen[6]​ que los tsunamis son ejemplos de un tipo especial de ondas no lineales denominadas solitones.

El fenómeno físico [7]​ de poca profundidad, y son observables también en otros lugares. Al respecto se ha expresado que:

...en ríos (de varios metros de altura: mascaret del río Sena o bore del río Severn ) y en estrechos (como en la pycnoclina del estrecho de Gibraltar, donde pueden alcanzar hasta cien metros de amplitud aunque sean apenas perceptibles en la superficie del mar) o en el océano (maremoto es una ola gigantesca en un puerto que ocurre como etapa final de una onda solitaria que ha recorrido de tres a cuatro mil kilómetros a unos ochocientos kilómetros por hora, por ejemplo de Alaska a Hawái).[8]

Tsunamis con otros orígenes

Existen otros mecanismos generadores de tsunamis menos corrientes que también pueden producirse por erupciones volcánicas, deslizamientos de tierra, meteoritos, explosiones submarinas y de origen meteorológico conocidos como meteotsunami[9]​. Estos fenómenos pueden producir olas enormes, mucho más altas que las de los tsunamis corrientes. De todas estas causas alternativas, la más común es la de los deslizamientos de tierra producidos por erupciones volcánicas explosivas, que pueden hundir islas o montañas enteras en el mar en cuestión de segundos. También existe la posibilidad de desprendimientos naturales tanto en la superficie como debajo de ella. Este tipo de maremotos difieren drásticamente de los maremotos tectónicos.

En primer lugar, la cantidad de energía que interviene. Está el terremoto del océano Índico de 2004, con una energía desarrollada de unos 32.000 MT. Solo una pequeña fracción de esta se traspasará al maremoto. Por el contrario, un ejemplo clásico de este tipo de tsunamis es la explosión del volcán Krakatoa, cuya erupción generó una energía de 300 MT. Sin embargo, se midió una altitud en las olas de hasta 50 m, muy superior a la de las medidas por los tsunamis del océano Índico. La razón de estas diferencias estriba en varios factores. Por una parte, el mayor rendimiento en la generación de las olas por parte de este tipo de fenómenos, menos energéticos pero que transmiten gran parte de su energía al mar. En un seísmo (o sismo), la mayor parte de la energía se invierte en mover las placas. Pero, aun así, la energía de los maremotos tectónicos sigue siendo mucho mayor que la de los mega maremotos. Otra de las causas es el hecho de que un maremoto tectónico distribuye su energía a lo largo de una superficie de agua mucho mayor, mientras que los mega maremotos parten de un suceso muy puntual y localizado. En muchos casos, los mega maremotos también sufren una mayor dispersión geométrica, debido justamente a la extrema localización del fenómeno. Además, suelen producirse en aguas relativamente poco profundas de la plataforma continental. El resultado es una ola con mucha energía en amplitud superficial, pero de poca profundidad y menor velocidad. Este tipo de fenómenos son increíblemente destructivos en las costas cercanas al desastre, pero se diluyen con rapidez. Esa disipación de la energía no solo se da por una mayor dispersión geométrica, sino también porque no suelen ser olas profundas, lo cual conlleva turbulencias entre la parte que oscila y la que no. Eso comporta que su energía disminuya bastante durante el trayecto.

Recreación gráfica de un maremoto aproximándose a la costa

El ejemplo típico de megatsunami es el causado por la caída de un meteorito en el océano. Este evento produciría ondas curvas de gran amplitud inicial, bastante superficiales, que sí tendrían dispersión geométrica y disipación por turbulencia, por lo que, a grandes distancias, quizá los efectos no serían tan dañinos. Una vez más los efectos estarían localizados, sobre todo, en las zonas cercanas al impacto. El efecto es exactamente el mismo que el de lanzar una piedra a un estanque. Evidentemente, si el meteorito fuera lo suficientemente grande, daría igual cuán alejado se encontrara el continente del impacto, pues las olas lo arrasarían de todas formas con una energía inimaginable. Tsunamis apocalípticos de esa magnitud debieron producirse hace 65 millones de años cuando un meteorito cayó en la actual península de Yucatán. Este mecanismo generador es, sin duda, el más raro de todos; de hecho, no se tienen registros históricos de ninguna ola causada por un impacto.[4]

Algunos geólogos especulan que un mega tsunami podría producirse en un futuro próximo (en términos geológicos) cuando se produzca un deslizamiento en el volcán de la parte inferior de la isla de La Palma, en las islas Canarias (cumbre Vieja). Sin embargo, aunque existe esa posibilidad (de hecho algunos valles de Canarias, como el de Güímar, en Tenerife, o el del Golfo, en El Hierro, se formaron por episodios geológicos de este tipo), no parece que eso pueda ocurrir a corto plazo.