Número áureo
English: Golden ratio

El número áureo surge de la división en dos de un segmento guardando las siguientes proporciones: La longitud total a+b es al segmento más largo a, como a es al segmento más corto b.

El número áureo (también llamado número de oro, razón extrema y media,[3]​ representado por la letra griega φ (phi) (en minúscula) o Φ (Phi) (en mayúscula) en honor al escultor griego Fidias.

Su valor numérico, mediante radicales o decimales es:

También se representa con la letra griega tau (Τ τ),[5]

Se trata de un número algebraico irracional (su representación decimal es infinita y no tiene periodo) que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como una expresión aritmética, sino como relación o proporción entre dos segmentos de una recta, es decir, una construcción geométrica. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza: en las nervaduras de las hojas de algunos árboles, en el grosor de las ramas, en el caparazón de un caracol, en los flósculos de los girasoles, etc. Una de sus propiedades aritméticas más curiosas es que su cuadrado (Φ2 = 2,61803398874988…) y su recíproco (1/Φ = 0,61803398874988…) tienen las mismas infinitas cifras decimales.

Asimismo, se atribuye un carácter estético a los objetos cuyas medidas guardan la proporción áurea. Algunos incluso creen que posee una importancia mística. A lo largo de la historia, se ha atribuido su inclusión en el diseño de diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido cuestionados por los estudiosos de las matemáticas y el arte.

Escultura contemporánea en acero elaborada por el escultor y matemático simbolismo, usa el concepto del número áureo en relación a la "Flor de la Vida" y "Geometría Sagrada". Mide 17,8 m (11xΦ) de alto y cada uno de los módulos de la espiral mide Φ=1,618 m. Es la escultura más alta de Costa Rica.

Definición

El número áureo es el valor numérico de la proporción que guardan entre sí dos segmentos de recta a y b (a más largo que b), que cumplen la siguiente relación:

  • La longitud total, suma de los dos segmentos a y b, es al segmento mayor a, lo que este segmento a es al menor b. Escrito como ecuación algebraica:

Siendo el valor del número áureo φ el cociente: Surge al plantear el problema geométrico siguiente: partir un segmento en otros dos, de forma que, al dividir la longitud total entre la del segmento mayor, obtengamos el mismo resultado que al dividir la longitud del segmento mayor entre la del menor.

Cálculo del valor del número áureo

Dos números a y b están en proporción áurea si se cumple:

Un método para encontrar el valor de φ es comenzar con la fracción izquierda. Simplificando la fracción:

Si entonces la ecuación queda:

La solución positiva de la ecuación de segundo grado es:

que es el valor del número áureo, equivalente a la relación .