Calorimetría
English: Calorimetry

El primer calorímetro del hielo del mundo, utilizado en el invierno de 1782–83, por Antoine Lavoisier y Pierre-Simon Laplace , para determinar el calor involucrado en varios cambios químicos ; cálculos basados en el descubrimiento previo de calor latente de Joseph Black . Estos experimentos marcan los cimientos de la termoquímica .
Cámara de calorimetría directa de Snellen, Universidad de Ottawa. [1]
Carro metabólico de calorimetría indirecta que mide la captación de oxígeno y la producción de CO2 de un sujeto que respira espontáneamente (método de dilución con capota de dosel).

La calorimetría es la ciencia o el acto de medir los cambios en las variables de estado de un cuerpo con el propósito de derivar la transferencia de calor asociada con los cambios de su estado debido, por ejemplo, a reacciones químicas, cambios físicos o transiciones de fase, bajo restricciones específicas. La calorimetría se realiza con un calorímetro. La palabra calorimetría se deriva de la palabra latina calor y la palabra griega μέτρον (metrón), que significa medida. Se dice que el médico y científico escocés Joseph Black, quien fue el primero en reconocer la distinción entre calor y temperatura, es el fundador de la ciencia de la calorimetría.[2]

La calorimetría indirecta calcula el calor que producen los organismos vivos midiendo su producción de dióxido de carbono y residuos de nitrógeno (con frecuencia amoníaco en organismos acuáticos o urea en organismos terrestres), o a partir de su consumo de oxígeno. Lavoisier observó en 1780 que la producción de calor se puede predecir a partir del consumo de oxígeno de esta manera, mediante regresión múltiple. La teoría del balance dinámico energético explica por qué este procedimiento es correcto. El calor generado por los organismos vivos también puede medirse por calorimetría directa, en la cual el organismo entero se coloca dentro del calorímetro para la medición.

Un instrumento moderno ampliamente utilizado es el calorímetro de barrido diferencial, un dispositivo que permite obtener datos térmicos en pequeñas cantidades de material. Implica calentar la muestra a una velocidad controlada y registrar el flujo de calor hacia o desde la muestra.

Cálculo calorimétrico clásico del calor

Casos con ecuación de estado diferenciable para un cuerpo de un componente

Cálculo clásico básico con respecto al volumen

La calorimetría requiere que un material de referencia que cambia la temperatura tenga propiedades térmicas constitutivas conocidas. La regla clásica, reconocida por Clausius y por Kelvin, es que la presión ejercida por el material calorimétrico está total y rápidamente determinada únicamente por su temperatura y volumen; esta regla es para cambios que no involucran cambio de fase, como la fusión del hielo. Hay muchos materiales que no cumplen con esta regla, y para ellos, la fórmula actual de la calorimetría clásica no proporciona una explicación adecuada. Aquí se supone que la regla clásica es válida para el material calorimétrico que se está utilizando, y las proposiciones se escriben matemáticamente:

La respuesta térmica del material calorimétrico se describe completamente por su presión como el valor de su función constitutiva de solo el volumen y la temperatura . Todos los incrementos se requieren aquí para ser muy pequeños. Este cálculo se refiere a un dominio de volumen y temperatura del cuerpo en el que no se produce un cambio de fase, y solo hay una fase presente. Un supuesto importante aquí es la continuidad de las relaciones de propiedad. Se necesita un análisis diferente para el cambio de fase.

Cuando se obtiene un pequeño incremento de calor por un cuerpo calorimétrico, con pequeños incrementos, de su volumen, y de su temperatura, el incremento de calor, , obtenido por el cuerpo de material calorimétrico, está dado por

donde

denota el calor latente con respecto al volumen, del material calorimétrico a temperatura constante controlada . La presión del entorno sobre el material se ajusta por instrumentos para imponer un cambio de volumen elegido, con volumen inicial . Para determinar este calor latente, el cambio de volumen es efectivamente la cantidad con variación instrumental de forma independiente. Este calor latente no es uno de los más utilizados, pero es de interés teórico o conceptual.
denota la capacidad calorífica del material calorimétrico a un volumen constante fijo , mientras que la presión del material puede variar libremente, con la temperatura inicial . La temperatura es forzada a cambiar por la exposición a un baño de calor adecuado. Es costumbre escribir , o incluso más brevemente como . Este calor latente es uno de los dos más utilizados.[9]

El calor latente con respecto al volumen es el calor requerido para el incremento de la unidad en volumen a temperatura constante. Se puede decir que se 'mide a lo largo de una isoterma', y la presión que ejerce el material puede variar libremente, de acuerdo con su ley constitutiva . Para un material dado, puede tener un signo positivo o negativo o, excepcionalmente, puede ser cero, y esto puede depender de la temperatura, como ocurre con el agua alrededor de 4 °C.[15]​ El calor latente con respecto al volumen también puede denominarse 'energía latente con respecto al volumen'. Para todos estos usos de 'calor latente', una terminología más sistemática utiliza 'capacidad de calor latente'.

La capacidad de calor a volumen constante es el calor requerido para el incremento de la unidad de temperatura a volumen constante. Se puede decir que se 'mide a lo largo de un isocor', y nuevamente, la presión que ejerce el material puede variar libremente. Siempre tiene un signo positivo. Esto significa que para un aumento en la temperatura de un cuerpo sin cambio de su volumen, se le debe suministrar calor. Esto es consistente con la experiencia común.

Cantidades como a veces se llaman 'diferenciales de curva', porque se miden a lo largo de curvas en el superficie.

Teoría clásica para la calorimetría de volumen constante (isocórica)

La calorimetría de volumen constante es la calorimetría realizada a un volumen constante. Esto implica el uso de un calorímetro de volumen constante. El calor todavía se mide por el principio de calorimetría mencionado anteriormente.

Esto significa que en un calorímetro construido adecuadamente, llamado calorímetro de bomba, el incremento de volumen puede hacerse desaparecer, . Para la calorimetría de volumen constante:

donde

denota el incremento de temperatura y
denota la capacidad calorífica a volumen constante.

Cálculo de calor clásico con respecto a la presión.

De la regla anterior de cálculo de calor con respecto al volumen, sigue una con respecto a la presión.[17]

En un proceso de pequeños incrementos, de su presión, y de su temperatura, el incremento de calor, , obtenido por el cuerpo de material calorimétrico, está dado por

donde

denota el calor latente con respecto a la presión, del material calorimétrico a temperatura constante, mientras que el volumen y la presión del cuerpo pueden variar libremente, a presión y temperatura ;
denota la capacidad de calor del material calorimétrico a presión constante, mientras que la temperatura y el volumen del cuerpo pueden variar libremente a presión y temperatura . Es costumbre escribir simplemente como , o incluso más brevemente como .

Las nuevas cantidades aquí están relacionadas con las anteriores:[18]

donde

denota la derivada parcial de con respecto a evaluado para

y

denota la derivada parcial de con respecto a evaluado para .

Los calores latentes y siempre son de signo opuesto. [19]

Es común referirse a la relación de calores específicos como

a menudo sólo se escribe como .[21]

Calorimetría a través del cambio de fase, la ecuación de estado muestra una discontinuidad de salto

Un calorímetro temprano fue el usado por Laplace y Lavoisier, como se muestra en la figura de arriba. Funcionó a temperatura constante, ya presión atmosférica. El calor latente involucrado no era un calor latente con respecto al volumen o con respecto a la presión, como en la cuenta anterior para la calorimetría sin cambio de fase. El calor latente involucrado en este calorímetro fue con respecto al cambio de fase, que ocurre naturalmente a temperatura constante. Este tipo de calorímetro funcionó midiendo la masa de agua producida por la fusión del hielo, que es un cambio de fase.

Acumulación de calefacción

Para un proceso de calentamiento del material calorimétrico dependiente del tiempo, definido por una progresión conjunta continua de y empezando por el tiempo y terminando en el tiempo , se puede calcular una cantidad acumulada de calor entregado, . Este cálculo se realiza mediante integración matemática a lo largo de la progresión con respecto al tiempo. Esto se debe a que los incrementos de calor son "aditivos"; pero esto no significa que el calor sea una cantidad conservadora. La idea de que el calor era una cantidad conservadora fue inventada por Lavoisier, y se llama " teoría calórica"; a mediados del siglo XIX fue reconocida como errónea. Escrito con el símbolo la cantidad no está restringido en absoluto para ser un incremento con valores muy pequeños; esto está en contraste con .

Uno puede escribir

.

Esta expresión usa cantidades tales como que se definen en la sección a continuación titulada "Aspectos matemáticos de las reglas anteriores".

Aspectos matemáticos de las reglas anteriores

El uso de cantidades 'muy pequeñas' tales como está relacionado con el requerimiento físico de la cantidad ser 'rápidamente determinado' por y ; tal "determinación rápida" se refiere a un proceso físico. Estas cantidades "muy pequeñas" se utilizan en el enfoque de Leibniz para el cálculo infinitesimal. El enfoque de Newton utiliza en cambio ' fluxiones ' como , lo que hace más obvio que debe ser 'rápidamente determinado'.

En términos de flujos, la primera regla de cálculo anterior se puede escribir [22]

donde

denota el tiempo
denota la tasa de tiempo de calentamiento del material calorimétrico en el momento
denota la tasa de tiempo de cambio de volumen del material calorimétrico en el tiempo
denota la tasa de tiempo de cambio de temperatura del material calorimétrico.

El incremento y la fluxión se obtienen por un tiempo particular que determina los valores de las cantidades en el lado derecho de las reglas anteriores. Pero esto no es una razón para esperar que exista una función matemática . Por esta razón, el incremento se dice que es un "diferencial imperfecto" o un " diferencial inexacto ".[25]​ Algunos libros lo indican por escrito en lugar de .[27]​ Además, la notación se usa en algunos libros.[29]

La cantidad correctamente se dice que es un funcional de la progresión conjunta continua de y , pero, en la definición matemática de una función, no es una función de . Aunque la fluxión se define aquí como una función del tiempo los símbolos y respectivamente, por sí solos no se definen aquí.

Ámbito físico de las normas de calorimetría anteriores

Las reglas anteriores se refieren únicamente a materiales calorimétricos adecuados. Los términos 'rápidamente' y 'muy pequeño' requieren una verificación física empírica del dominio de validez de las reglas anteriores.

Las reglas anteriores para el cálculo del calor pertenecen a la calorimetría pura. No hacen referencia a la termodinámica, y se entendieron principalmente antes del advenimiento de la termodinámica. Son la base de la contribución 'termo' a la termodinámica. La contribución de la 'dinámica' se basa en la idea de trabajo, que no se utiliza en las reglas de cálculo anteriores.